Protection induced by malaria virus-like particles containing codon-optimized AMA-1 of Plasmodium berghei.

2019 
Despite the extensive endeavours, developing an effective malaria vaccine remains as a great challenge. Apical membrane antigen 1 (AMA-1) located on the merozoite surface of parasites belonging to the genus Plasmodium is involved in red blood cell invasion. Influenza virus-like particle (VLP) vaccines containing codon-optimized or native (non-codon optimized) AMA-1 from Plasmodium berghei were generated. VLP-induced protective immunity was evaluated in a mouse model. Mice immunized with VLP vaccine containing the codon-optimized AMA-1 elicited higher levels of P. berghei-specific IgG and IgG2a antibody responses compared to VLPs containing non-codon optimized AMA-1 before and after challenge infection. Codon-optimized AMA-1 VLP vaccination induced higher levels of CD4+ T cells, CD8+ T cells, B cells, and germinal centre cell responses compared to non-codon optimized AMA-1 VLPs. Importantly, the codon-optimized AMA-1 VLP vaccination showed lower body weight loss, longer survival and a significant decrease in parasitaemia compared to non-codon optimized VLP vaccination. Overall, VLP vaccine expressing codon-optimized AMA-1 induced better protective efficacy than VLPs expressing the non-codon optimized AMA-1. Current findings highlight the importance of codon-optimization for vaccine use and its potential involvement in future malaria vaccine design strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    9
    Citations
    NaN
    KQI
    []