Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction

2006 
Abstract Nicotinamide adenine dinucleotide (NAD)+-dependent sirtuins have been identified to be key regulators in the lifespan extending effects of calorie restriction (CR) in a number of species. In this study we report for the first time that promotion of the NAD+-dependent sirtuin, SIRT1-mediated deacetylase activity, may be a mechanism by which CR influences Alzheimer disease (AD)-type amyloid neuropathology. Most importantly, we report that the predicted attenuation ofβ-amyloid content in the brain during CR can be reproduced in mouse neurons in vitro by manipulating cellular SIRT1 expression/activity through mechanisms involving the regulation of the serine/threonine Rho kinase ROCK1, known in part for its role in the inhibition of the non-amyloidogenic α-secretase processing of the amyloid precursor protein. Conversely, we found that the expression of constitutively active ROCK1 in vitro cultures significantly prevented SIRT1-mediated response, suggesting that α-secretase activity is required for SIRT1-mediated prevention of AD-type amyloid neuropathology. Consistently we found that the expression of exogenous human (h) SIRT1 in the brain of hSIRT1 transgenics also resulted in decreased ROCK1 expression and elevatedα-secretase activity in vivo. These results demonstrate for the first time a role for SIRT1 activation in the brain as a novel mechanism through which CR may influence AD amyloid neuropathology. The study provides a potentially novel pharmacological strategy for AD prevention and/or treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    513
    Citations
    NaN
    KQI
    []