β-Sarcoglycan gene transfer decreases fibrosis and restores force in LGMD2E mice

2016 
Limb-girdle muscular dystrophy type 2E (LGMD2E) results from mutations in the β-sarcoglycan (SGCB) gene causing loss of functional protein and concomitant loss of dystrophin-associated proteins. The disease phenotype is characterized by muscle weakness and wasting, and dystrophic features including muscle fiber necrosis, inflammation and fibrosis. The Sgcb-null mouse recapitulates the clinical phenotype with significant endomysial fibrosis providing a relevant model to test whether gene replacement will be efficacious. We directly addressed this question using a codon optimized human β-sarcoglycan gene (hSGCB) driven by a muscle-specific tMCK promoter (scAAVrh74.tMCK.hSGCB). Following isolated limb delivery (5 × 1011 vector genome (vg)), 91.2% of muscle fibers in the lower limb expressed β-sarcoglycan, restoring assembly of the sarcoglycan complex and protecting the membrane from Evans blue dye leakage. Histological outcomes were significantly improved including decreased central nucleation, normalization of muscle fiber size, decreased macrophages and inflammatory mononuclear cells, and an average of a 43% reduction in collagen deposition in treated muscle compared with untreated muscle at end point. These measures correlated with improvement of tetanic force and resistance to eccentric contraction. In 6-month-old mice, as indicated by collagen staining, scAAVrh74.tMCK.hSGCB treatment reduced fibrosis by 42%. This study demonstrates the potential for gene replacement to reverse debilitating fibrosis, typical of muscular dystrophy, thereby providing compelling evidence for movement to clinical gene replacement for LGMD2E.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    18
    Citations
    NaN
    KQI
    []