High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers

2018 
Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the BEC regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to $\sim 90$ K with onset carrier densities as high as $4 \times 10^{12}$ cm$^{-2}$. This transition temperature is significantly larger than what is found in double electron-hole few-layers of graphene. Our results can guide experimental research towards the realization of anisotropic condensate states in electron-hole phosphorene monolayers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    22
    Citations
    NaN
    KQI
    []