Effect of the Doping and the Al Content on the Microstructure and Morphology of Thin AlxGa1−xN Layers Grown by MOCVD

2000 
AlxGa1−xN {x=30% (doped and undoped), 45% (doped)} thin films were grown by MOCVD on ∼2 μm thick GaN layer using Al2O3 substrate. These films were designed to be the active parts of HFETs with nsμ product of about 1016(Vs)-1. The layers were then studied by means of transmission electron microscopy (TEM) techniques. In this paper, it is shown that the AlxGa1−xN layer thickness was non-uniform due to the presence of V-shaped defects within the AlxGa1−xN films. The nucleation of these V-shaped defects has taken place about 20 nm above the AlxGa1−xN/GaN interface. Many of these V-shaped defects were associated with the presence of the threading dislocations propagating from the GaN/Al2O3 interface. We show that the density of these V-shaped defects increases with the doping level and also with the Al mole fraction in the films. The formation mechanism of the V-shaped defects seems to be related to the concentration of dopants or other impurities at the ledges of the growing film. This suggestion is supported by high resolution TEM analysis. The growth front between the V-shaped defects in the lower Al concentration thin films was planar as compared with the three-dimensional growth in the doped, higher Al concentration film. This interpretation of the origin of the V-shaped defects is consistent with the observed lowering of the Schottky barrier height in n-doped AlGaN/Ni Schottky diodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    3
    Citations
    NaN
    KQI
    []