Quantifying the three-dimensional joint position sense of the shoulder

2019 
Abstract Joint position sense is important for performing activities of daily living and recreational activities. The objective of this study was to develop new insights into the proprioceptive capabilities of the shoulder using a novel virtual reality paradigm where participants actively recreated shoulder positions in all three dimensions. This allows for better identification of changes in joint position sense across different shoulder postures. Ten males and ten female healthy adults matched a cursor controlled by shoulder rotations calculated from motion capture tracking, to a target shoulder position presented in a virtual environment with the use of a virtual reality headset. Four elevation angles, three plane of elevation angles, and three rotation angles were investigated, totaling thirty-six angles that encompassed the range of motion of the shoulder. Joint position sense was enhanced as the elevation angle was increased, and further enhanced when the arm was more externally rotated and elevated. As elevation angle increased to 90°, joint position sense significantly increased. There was also a significant interaction of external rotation on elevation angle. As elevation angle increased, participants were more accurate when the arm was externally, but exhibited greater variability. These improvements in joint position sense are likely produced by increased tension in muscles and capsuloligamentous mechanoreceptors within the shoulder. As many sports and activities of daily living require joint position sense to complete a task, the ability to elevate and externally rotate is important for adequate shoulder proprioception and control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []