Reduction of CO2 emission from off-gases of steel industry by dry reforming of methane.

2021 
In a novel process, CO 2   and CH 4  from the off-gases of the coke oven and blast furnace are used in homogeneous reforming of those green-house gases to valuable syngas, a mixture of H 2  and CO. Synthetic mixtures of the off-gases from those large apparatuses of steel industry are fed to a high-temperature, high-pressure flow reactor at varying temperature, pressure, residence time, and mixing ratio of coke oven gas (COG) to blast furnace gas (BFG). In this study, a maximal reduction of 78.5% CO 2  and a CH 4  conversion of 95% could be achieved at 1350°C, 5.5 bar and a COG/BFG ratio of 0.6. Significant carbonaceous deposits were formed but did not block the reactor tube in the operational time window allowing cyclic operation of the process. These measurements were based on prior thermodynamic analysis and kinetic predictions using an elementary step reaction mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []