Disorder-to-order transitions in the molten globule-like Golgi Reassembly and Stacking Protein

2018 
Abstract Background Golgi Reassembly and Stacking Proteins (GRASPs) are widely spread among eukaryotic cells (except plants) and are considered as key components in both the stacking of the Golgi cisternae and its lateral connection. Furthermore, GRASPs were also proved essential in the unconventional secretion pathway of several proteins, even though the mechanism remains obscure. It was previously observed that the GRASP homologue in Cryptococcus neoformans has a molten globule-like behavior in solution. Methods We used circular dichroism, synchrotron radiation circular dichroism and steady-state as well as time-resolved fluorescence. Results We report the disorder-to-order transition propensities for a native molten globule-like protein in the presence of different mimetics of cell conditions. Changes in the dielectric constant (such as those experienced close to the membrane surface) seem to be the major factor in inducing multiple disorder-to-order transitions in GRASP, which shows very distinct behavior when in conditions that mimic the vicinity of the membrane surface as compared to those found when free in solution. Other folding factors such as molecular crowding, counter ions, pH and phosphorylation exhibit lower or no effect on GRASP secondary structure and/or stability. General significance To the best of our knowledge, this is the first study focusing on understanding the disorder-to-order transitions of a molten globule structure without the need of any mild denaturing condition. A model is also introduced aiming at describing how the cell could manipulate the GRASP sensitivity to changes in the dielectric constant during different cell-cycle periods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    13
    Citations
    NaN
    KQI
    []