Isotonic regression in general dimensions

2019 
We study the least squares regression function estimator over the class of real-valued functions on $[0,1]^{d}$ that are increasing in each coordinate. For uniformly bounded signals and with a fixed, cubic lattice design, we establish that the estimator achieves the minimax rate of order $n^{-\min\{2/(d+2),1/d\}}$ in the empirical $L_{2}$ loss, up to polylogarithmic factors. Further, we prove a sharp oracle inequality, which reveals in particular that when the true regression function is piecewise constant on $k$ hyperrectangles, the least squares estimator enjoys a faster, adaptive rate of convergence of $(k/n)^{\min(1,2/d)}$, again up to polylogarithmic factors. Previous results are confined to the case $d\leq2$. Finally, we establish corresponding bounds (which are new even in the case $d=2$) in the more challenging random design setting. There are two surprising features of these results: first, they demonstrate that it is possible for a global empirical risk minimisation procedure to be rate optimal up to polylogarithmic factors even when the corresponding entropy integral for the function class diverges rapidly; second, they indicate that the adaptation rate for shape-constrained estimators can be strictly worse than the parametric rate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    45
    Citations
    NaN
    KQI
    []