Laser solid-phase synthesis of single-atom catalysts.

2021 
Single-atom catalysts (SACs) with atomically dispersed catalytic sites have shown outstanding catalytic performance in a variety of reactions. However, the development of facile and high-yield techniques for the fabrication of SACs remains challenging. In this paper, we report a laser-induced solid-phase strategy for the synthesis of Pt SACs on graphene support. Simply by rapid laser scanning/irradiation of a freeze-dried electrochemical graphene oxide (EGO) film loaded with chloroplatinic acid (H2PtCl6), we enabled simultaneous pyrolysis of H2PtCl6 into SACs and reduction/graphitization of EGO into graphene. The rapid freezing of EGO hydrogel film infused with H2PtCl6 solution in liquid nitrogen and the subsequent ice sublimation by freeze-drying were essential to achieve the atomically dispersed Pt. Nanosecond pulsed infrared (IR; 1064 nm) and picosecond pulsed ultraviolet (UV; 355 nm) lasers were used to investigate the effects of laser wavelength and pulse duration on the SACs formation mechanism. The atomically dispersed Pt on graphene support exhibited a small overpotential of −42.3 mV at −10 mA cm−2 for hydrogen evolution reaction and a mass activity tenfold higher than that of the commercial Pt/C catalyst. This method is simple, fast and potentially versatile, and scalable for the mass production of SACs. Synthesis of Pt single atom catalysts is achieved by one-step laser irradiation of “isolated” H2PtCl6 precursor on graphene oxide, via filtration and freeze-drying sublimation, by simultaneous pyrolysis of the precursor and reduction of graphene oxide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []