High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles

2015 
The toxic effects of Ag nanoparticles (NPs) remain an issue of debate, where the respective contribution of the NPs themselves and of free Ag+ ions present in the NP stock suspensions and after intracellular NP corrosion are not fully understood. Here, we employ a recently set up methodology based on high-content (HC) imaging combined with high-content gene expression studies to examine the interaction of three types of Ag NPs with identical core sizes, but coated with either mercaptoundecanoic acid (MUA), dodecylamine-modified poly(isobutylene-alt-maleic anhydride) (PMA), or poly(ethylene glycol) (PEG)-conjugated PMA with two types of cultured cells (primary human umbilical vein endothelial cells (HUVEC) and murine C17.2 neural progenitor cells). As a control, cells were also exposed to free Ag+ ions at the same concentration as present in the respective Ag NP stock suspensions. The data reveal clear effects of the NP surface properties on cellular interactions. PEGylation of the NPs significantly reduce...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    58
    Citations
    NaN
    KQI
    []