Out-of-plane Seebeck coefficient of the cuprate La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ across the pseudogap critical point: particle-hole asymmetry and Fermi surface transformation

2021 
We report measurements of the Seebeck effect in both the $ab$ plane ($S_{\rm a}$) and along the $c$ axis ($S_{\rm c}$) of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ (Nd-LSCO), performed in magnetic fields large enough to suppress superconductivity down to low temperature. We use the Seebeck coefficient as a probe of the particle-hole asymmetry of the electronic structure across the pseudogap critical doping $p^{\star} = 0.23$. Outside the pseudogap phase, at $p = 0.24 > p^{\star}$, we observe a positive and essentially isotropic Seebeck coefficient as $T \rightarrow 0$. That $S > 0$ at $p = 0.24$ is at odds with expectations given the electronic band structure of Nd-LSCO above $p^{\star}$ and its known electron-like Fermi surface. We can reconcile this observation by invoking an energy-dependent scattering rate with a particle-hole asymmetry, possibly rooted in the non-Fermi liquid nature of cuprates just above $p^{\star}$. Inside the pseudogap phase, for $ p < p^{\star}$, $S_{\rm a}$ is seen to rise at low temperature as previously reported, consistent with the drop in carrier density $n$ from $n \simeq 1 + p$ to $n \simeq p$ across $p^{\star}$ as inferred from other transport properties. In stark contrast, $S_{\rm c}$ at low temperature becomes negative below $p^{\star}$, a novel signature of the pseudogap phase. The sudden drop in $S_{\rm c}$ reveals a change in the electronic structure of Nd-LSCO upon crossing $p^{\star}$. We can exclude a profound change of the scattering across $p^{\star}$ and conclude that the change in the out-of-plane Seebeck coefficient originates from a transformation of the Fermi surface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []