language-icon Old Web
English
Sign In

A Novikov fundamental group

2017 
Given a $1$-cohomology class $u$ on a closed manifold $M$, we define a Novikov fundamental group associated to $u$, generalizing the usual fundamental group in the same spirit as Novikov homology generalizes Morse homology to the case of non exact $1$-forms. As an application, lower bounds for the minimal number of index $1$ and $2$ critical points of Morse closed $1$-forms are obtained, that are different in nature from those derived from the Novikov homology.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []