Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort X-ray Pulses in Real Time

2020 
Structural changes in nature and technology are driven by charge carrier motion. A process such as charge-directed reactivity that can be operational in radiobiology is more efficient, if energy transfer and charge motion proceeds along well-defined quantum mechanical pathways keeping the coherence and minimizing dissipation. The open question is: do long-lived electronic quantum coherences exist in complex molecules? Here, we use x-rays to create and monitor electronic wave packets in the amino acid glycine. The outgoing photoelectron wave leaves behind a positive charge formed by a superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced electronic coherence through the photoelectron emission from the sequential double photoionization processes. The observed sinusoidal modulation of the detected electron yield as a function of time clearly demonstrates that electronic quantum coherence is preserved for at least 25 femtoseconds in this molecule of biological relevance. The surviving coherence is detected via the dominant sequential double ionization channel, which is found to exhibit a phase shift as a function of the photoelectron energy. The experimental results agree with advanced ab-initio simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    1
    Citations
    NaN
    KQI
    []