Using Cloud Top Pressures Derived from Raman Scattering in the UV for the OMI Total Column Ozone Retrievals

2003 
The OMI cloud pressure product is necessary for accounting for cloud effects on the mission- critical total ozone product. One of the OM1 cloud pressure algorithms uses UV measurements to derive cloud pressures from the high frequency structure of top- of-atmosphere reflectance caused by rotational Raman scattering (RRS) in the atmosphere. RRS results in filling-in of Fraunhofer lines in the backscatter UV spectra (also known as the Ring effect). The magnitude of filling-in of the Fraunhofer lines is roughly proportional to the average number of solar photon scatterings in the atmosphere above the clouds. This property of RRS is used to deduce an effective cloud pressure. The cloud pressure algorithm retrieves the cloud pressure and cloud fraction using a concept of the Mixed Lambert Equivalent Reflectivity (MLER) also used for the TOMS-V8 OM1 total column ozone algorithm. Currently, this OMI total column ozone algorithm utilizes information about cloud top pressures from a climatology based on IR measurements. The IR-derived cloud top pressure is known to be lower than UV-derived cloud top pressure because UV radiation penetrates clouds deeper than IR radiation. That is why the UV-derived cloud pressure may be more consistent withthe total ozone algorithm. We estimate total column ozone differences caused by replacing the cloud pressure climatology with cloud pressures retrieved from GOME data same as used for retrieval of ozone.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []