Transcriptome Analysis of the Chicken Follicular Theca Cells with miR-135a-5p Suppressed.

2020 
As a class of transcription regulators, numerous miRNAs have been verified to participate in regulating ovary follicular development in chickens (Gallus gallus). Previously we showed that gga-miR-135a-5p has significant differential expression between high and low-yield chicken ovaries, and the abundance of gga-miR-135a-5p is significantly higher in follicular theca cells than in granulosa cells. However, the exact role of gga-miR-135a-5p in chicken follicular theca cells is unclear. In this study, primary chicken follicular theca cells were isolated and then transfected with gga-miR-135a-5p inhibitor. Transcriptome sequencing was performed in chicken follicular theca cells with or without transfection. Differentially expressed genes (DEGs) were analyzed using bioinformatics. A dual-luciferase reporter assay was used to verify the target relationship between gga-miR-135a-5p and predicted targets within the DEGs. Compared with the normal chicken follicle theca cells, 953 up-regulated and 1060 down-regulated genes were detected in cells with gga-miR-135a-5p inhibited. The up-regulated genes were significantly enriched in Gene Ontology terms and pathways involved in cell proliferation and differentiation. In chicken follicular theca cells, Kruppel-like factor 4 (KLF4), ATPase phospholipid transporting 8A1 (ATP8A1), and Complexin-1(CPLX1) were significantly up-regulated when the expression of gga-miR-135a-5p was inhibited. In addition, KLF4, ATP8A1, and CPLX1 confirmed as targets of gga-miR-135a-5p by using a dual-luciferase assay in vitro. The results suggest that gga-mir-135a-5p may involve in proliferation and differentiation in chicken ovarian follicular theca cells by targeting KLF4, ATP8A1, and CPLX1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    1
    Citations
    NaN
    KQI
    []