MirrorNet: Bio-Inspired Adversarial Attack for Camouflaged Object Segmentation
2020
Camouflaged objects are generally difficult to be detected in their natural environment even for human beings. In this paper, we propose a novel bio-inspired network, named the MirrorNet, that leverages both instance segmentation and adversarial attack for the camouflaged object segmentation. Differently from existing networks for segmentation, our proposed network possesses two segmentation streams: the main stream and the adversarial stream corresponding with the original image and its flipped image, respectively. The output from the adversarial stream is then fused into the main stream's result for the final camouflage map to boost up the segmentation accuracy. Extensive experiments conducted on the public CAMO dataset demonstrate the effectiveness of our proposed network. Our proposed method achieves 89% in accuracy, outperforming the state-of-the-arts. Project Page: https://sites.google.com/view/ltnghia/research/camo
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
64
References
17
Citations
NaN
KQI