Effects of Side-Chain Length and Shape on Polytellurophene Molecular Order and Blend Morphology

2017 
We investigate the molecular order and thin film morphology of the conjugated polymer polytellurophene, in order to understand how the tellurium atom and the choice of side-chain influence the conjugated polymer’s backbone planarity and performance in organic transistors. We find that poly(3hexyltellurophene) (P3HTe) continues the trend from polythiophene (P3HT) to polyselenophene (P3HS): substitution with Tellurium leads to a more planar backbone, evident from the shifts of the C═C vibrational peak to lower wavenumbers (∼1389 cm–1) and a smaller optical band gap (∼1.4 eV). Resonant Raman spectroscopy revealed that molecular order was highly dependent on the structure of the P3ATe alkyl side-chain: a longer chains introduces kinetic hindrance, reducing the fraction of ordered phase obtained at room temperature, while a branched side-chain introduces steric hindrance, with intrinsic disorder present even when deposited at higher temperatures. When blended with the insulator HDPE, all three polymers exhibit...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    18
    Citations
    NaN
    KQI
    []