Efficient Prediction of Real-Time Forming Forces in Flexible Stretch Bending

2021 
Stretch bending is commonly used in the mass production of profile-like products in many industrial sectors due to its high dimensional accuracy and process capabilities. One of the challenges of conventional stretch bending is low flexibility, however, making it difficult to meet today’s requirements for mass customization. As a countermeasure, a novel flexible rotary stretch bending process was presented (Ma and Welo, 2021), which allows the forming of complex shapes with varying curvatures and angles. However, less knowledge is known about the most fundamental force requirements during forming, which in turn limits the design and development of product and process. In this research, an analytical model is developed for accurate and efficient prediction of real-time forming forces in flexible rotary stretch bending, aiming to enhance the understanding of applied force requirements throughout the process. In this model, the entire kinematically-controlled loading (strain) history is considered to realize real-time monitoring of force. In addition, the elastic-plastic properties of profile, the profile dimensions, the tooling geometries as well as the tool-workpiece friction are comprehensively taken into account to improve the analytical accuracy of forming force predictions. As an explicit solution can be achieved, the analytical model presents high efficiency for quick prediction, which can be used in attempts to adaptively control the process. Based on finite element simulation, the analytical model is validated in the forming of aluminium rectangular, hollow profiles, showing very high accuracy and efficiency for predicting real-time forming forces of both clamp unit and bending die for forming with different pre-stretching levels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []