Magnetic characterization of mixed phases in FeVO4Co3V2O8 system

2018 
Abstract Dynamic and static magnetic properties of four n FeVO 4 /(1- n )Co 3 V 2 O 8 composites obtained in reactions between n FeVO 4 and (1- n )Co 3 V 2 O 8 ( n  = 0.82, 0.80, 0.78 and 0.76) have been investigated by dc magnetometry and electron paramagnetic resonance (EPR). All samples were diphase containing both the howardevansite-type and the lyonsite-type phases in different proportions. Dc magnetic susceptibility study showed the Curie-Weiss paramagnetic behavior with strong antiferromagnetic (AFM) interaction in the high-temperature range and the phase transition to the AFM state at low temperatures. The calculated effective magnetic moment could be justified by the presence of high spin Fe 3+ and Co 2+ ions. The appearance of hysteresis loop in isothermal magnetisation at low temperature indicates the existence of the ferromagnetic component in all four samples, but only 0.5% of all magnetic ions are involved in this phase. EPR spectra recorded in high-temperature range (T > 90 K) consisted of a single broad line centred at ∼3.2 kG. The fitting of observed spectra with two Gaussian lineshape functions allowed to study the temperature dependence of EPR parameters (resonance field, linewidth, integrated intensity). This analysis suggests that EPR signal arises from two spin subsystems: paramagnetic Fe 3+ ions subjected to AFM interaction and AFM spin pairs/clusters of iron/cobalt visible only at high temperatures. At low temperatures two transitions to AFM states, due to the mixture of two structural phases, are registered in magnetic susceptibility measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []