Structural Diversities in Heterometallic Mn–Ca Cluster Chemistry from the Use of Salicylhydroxamic Acid: {MnIII4Ca2}, {MnII/III6Ca2}, {MnIII/IV8Ca}, and {MnIII8Ca2} Complexes with Relevance to Both High- and Low-Valent States of the Oxygen-Evolving Complex

2017 
One-pot reactions between the [Mn3O(O2CPh)6(py)x]+/0 triangular precursors and either CaBr2·xH2O or CaCl2·6H2O, in the presence of salicylhydroxamic acid (shaH2), have afforded the heterometallic complexes [MnIII4Ca2(O2CPh)4(shi)4(H2O)3(Me2CO)] (1) and (pyH)[MnII2MnIII4Ca2Cl2(O2CPh)7(shi)4(py)4] (2), respectively, in good yields. Further reactions but using a more flexible synthetic scheme comprising the Mn(NO3)2·4H2O/Ca(NO3)2·4H2O and Mn(O2CPh)2·2H2O/Ca(ClO4)2·4H2O “metal blends” and shaH2, in the presence of external base NEt3, led to the new complexes (NHEt3)2[MnIII4MnIV4Ca(OEt)2(shi)10(EtOH)2] (3) and (NHEt3)4[MnIII8Ca2(CO3)4(shi)8] (4), respectively. In all reported compounds, the anion of the tetradentate (N,O,O,O)-chelating/bridging ligand salicylhydroxime (shi3–), resulting from the in situ metal-ion-assisted amide–iminol tautomerism of shaH2, was found to bridge both Mn and Ca atoms. Complexes 1–4 exhibit a variety of different structures, metal stoichiometries, and Mn oxidation-state description...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    11
    Citations
    NaN
    KQI
    []