Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration

2018 
Abstract This study aimed to assess the capability of 97 epidemic S. enterica strains belonging to 18 serovars to form biofilm. Five strains characterized as strong biofilm-producers, belonging to distinct serovars ( S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) were assayed for adhesion/biofilm formation on stainless steel surfaces. The experiments were conducted in different combinations of NaCl (0, 2, 4, 5, 6, 8 and 10% w/v), pH (4, 5, 6 and 7) and temperatures (8 °C, 12 °C, 20 °C and 35 °C). Only adhesion was assumed to occur when S. enterica counts were ≥3 and 2 , whereas biofilm formation was defined as when the counts were ≥5 log CFU/cm 2 . The binary responses were used to develop models to predict the probability of adhesion/biofilm formation on stainless steel surfaces by five strains belonging to different S. enterica serovars. A total of 99% (96/97) of the tested S. enterica strains were characterized as biofilm-producers in the microtiter plate assays. The ability to form biofilm varied ( P S. enterica tested. All strains showed adhesion at pH 4 up to 4% of NaCl and at 20 °C and 35 °C. The probability of adhesion decreased when NaCl concentrations were >8% and at 8 °C, as well as in pH values ≤ 5 and NaCl concentrations > 6%, for all tested strains. At pH 7 and 6, biofilm formation for S. Enteritidis, S. Infantis, S. Typhimurium, S. Heidelberg was observed up to 6% of NaCl at 35 °C and 20 °C. The predicted boundaries for adhesion were pH values  S. enterica serovars. The boundary models can be used to predict adhesion and biofilm formation ability on stainless steel by S. enterica as affected by pH, NaCl and temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    23
    Citations
    NaN
    KQI
    []