Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol

2020 
Abstract The present research describes the synthesis of new nanomagnetic activated carbon material with high magnetization, and high surface area prepared in a single pyrolysis step that is used for the carbonization, activation, and magnetization of the produced material. The pyrolysis step of tucuma seed was carried out in a conventional tubular oven at 600 °C under N2-flow. It was prepared three magnetic carbons MT-1.5, MT-2.0, MT-2.5, that corresponds to the proportion of biomass: ZnCl2 always 1:1 and varying the proportion of NiCl2 of 1.5, 2.0, and 2.5, respectively. These magnetic nanocomposites were characterized by Vibrating Sample Magnetometer (VSM), X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, hydrophobic/hydrophilic balance, CHN/O elemental analysis, modified Boehm titration, N2 adsorption-desorption isotherms; and pHpzc. All the materials obtained presented Ni particles with an average crystallite size of less than 33 nm. The MT-2.0 was employed for the removal of nicotinamide and propranolol from aqueous solutions. Based on Liu isotherm, the Qmax was 199.3 and 335.4 mg g−1 for nicotinamide and propranolol, respectively. MT-2.0 was used to treat simulated pharmaceutical industry effluents attaining removal of all organic compounds attaining up to 99.1 % of removal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    30
    Citations
    NaN
    KQI
    []