Heat capacity of poly(vinylidene fluoride) and polytetrafluoroethylene between 5 and 200°K

1979 
Heat capacities of poly(vinylidene fluoride) (PVF2) and polytetrafluoroethylene (PTFE) have been measured between 5 and 100°K with an accuracy of (1–5)% by adiabatic calorimetry. Calculations based on contributions from known optical lines and the Tarasov continuum model are in good agreement with experimental results down to 30°K for PVF2 and 10°K for PTFE, and yield characteristic temperatures θ1 and θ3 which are consistent with previous values determined from high-temperature (100—350°K) data. At lower temperature the measured heat capacity is significantly higher [(30–100)%] than the model prediction, and can be satisfactorily accounted for by the introduction of localized vibrators at a concentration of about 1% as compared to acoustical oscillators and at a characteristic temperature of about 20°K. Using established data on polyethylene for comparison, the principle of additivity for heat capacities is found to be valid down to at least 20°K, convering the region (<60°K) where interchain vibrations contribute significantly to the heat capacity. Possible reasons for this unexpected behavior are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []