Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems

2020 
The concept of reservoir computing emerged from a specific machine learning paradigm characterized by a three-layered architecture (input, reservoir, and output), where only the output layer is trained and optimized for a particular task. In recent years, this approach has been successfully implemented using various hardware platforms based on optoelectronic and photonic systems with time-delayed feedback. In this review, we provide a survey of the latest advances in this field, with some perspectives related to the relationship between reservoir computing, nonlinear dynamics, and network theory.The concept of reservoir computing emerged from a specific machine learning paradigm characterized by a three-layered architecture (input, reservoir, and output), where only the output layer is trained and optimized for a particular task. In recent years, this approach has been successfully implemented using various hardware platforms based on optoelectronic and photonic systems with time-delayed feedback. In this review, we provide a survey of the latest advances in this field, with some perspectives related to the relationship between reservoir computing, nonlinear dynamics, and network theory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    144
    References
    18
    Citations
    NaN
    KQI
    []