Concatenated Space-Time Block Codes and Turbo Codes with Unstructured Interference

2004 
The performance of space-time block codes in providing transmit diversity is severely degraded when strong localized interference is present. This problem is addressed by investigating a recently proposed coherent space-time block code decoding algorithm for unknown interference suppression. The algorithm assumes a Gaussian noise and interference approximation and is based on a cyclic-based maximum-likelihood estimation technique (CML). In this thesis, simulations are done applying CML in a coherent system with unstructured interference to validate previous work. An extension of these results is obtained by examining factors that affect CML performance and modifying CML for use in a noncoherent system. To improve bit error rate performance, a turbo code for channel coding was added to both systems. This addition required the development of reliability metrics for soft-information transfer between the space-time block code detector and the turbo code decoder. Significant coding gains exceeding 8dB at a bit error rate of are achieved for the turbo-coded system when compared to that of an uncoded system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []