A portable and high-integrated 3D microfluidic chip for bacterial quantification and antibiotic susceptibility testing

2021 
On-site single-cell antibiotic susceptibility testing (sc-AST) provides unprecedented technical potential to improve the treatment of bacterial infections and study heterogeneous resistance to antibiotics. Herein, we developed a portable and high-integrated 3D polydimethylsiloxane (PDMS) chip to perform fast and on-site bacteria quantification and sc-AST. The 3D arrangement of the chambers significantly improved the integration of reaction units (~10000/cm2) and widened the dynamic range to 5 orders of magnitude. A capillary valve-based flow distributor was adopted for flow equidistribution in 64 parallel channels and uniform sample loading in as short as 2 s. The degassed PDMS enabled this device to independently dispense the sample into 3D chamber array with almost 100% efficiency. The quantification of Escherichia coli (E. coli) strains with various activity was accomplished in 0.5-2 h, shortened by 20 h in comparison to the traditional plate counting. The functionality of our platform was demonstrated with several effective antibiotics by determining minimum inhibitory concentrations at single-cell level. Furthermore, we utilized the lyophilization of test reagents and needle-mediated reagents rehydration to realize one-step on-site sc-AST. The results indicate that the proposed sc-AST platform is portable, highly sensitive, fast, accurate and user-friendly, thus it has the potential to facilitate precise therapy in time and monitor the treatment. Meanwhile, it could serve as an approach for investigating the mechanisms of heteroresistance at single-cell resolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []