MUTYH c.933+3A > C, associated with a severely impaired gene expression, is the first Italian founder mutation in MUTYH-Associated Polyposis

2013 
MUTYH variants are differently distributed in geographical areas of the world. In MUTYH-associated polyposis (MAP) patients from North-Eastern Italy, c.933+3A>C (IVS10+3A>C), a transversion causing an aberrant splicing process, accounts for nearly 1/5 of all mutations. The aim of this study was to verify whether its high frequency in North-Eastern Italy is due to a founder effect and to clarify its impact on MUTYH transcripts and protein. Haplotype analysis and age estimate performed on members of eleven Italian MAP families and cancer-free controls provided evidence that c.933+3A>C is a founder mutation originated about 83 generations ago. In addition, the Italian haplotype associated with the c.933+3A>C was also found in German families segregating the same mutation, indicating it had a common origin in Western Europe. Altogether c.933+3A>C and the two common Caucasian mutations p.Tyr179Cys and p.Gly396Asp represent about 60% of MUTYH alterations in MAP patients from North-Eastern Italy, suggesting the opportunity to perform targeted molecular screening for these variants in the diagnostic setting. Expression analyses performed on lymphoblastoid cell lines supported the notion that MUTYH c.933+3A>C alters splicing causing the synthesis of a non functional protein. However, some primary transcripts escape aberrant splicing, producing traces of full-length transcript and wild-type protein in a homozygote; this is in agreement with clinical findings that suggest a relatively mild phenotypic effect for this mutation. Overall, these data, that demonstrate a founder effect and further elucidate the splicing alterations caused by the MUTYH c.933+3A>C mutation, have important implications for genetic counseling and molecular diagnosis of MAP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    10
    Citations
    NaN
    KQI
    []