Dynamically tuning polarizations of electromagnetic fields based on hybrid skew-resonator-graphene meta-surfaces

2020 
We demonstrate the enhanced polarization modulation of electromagnetic fields through hybrid skew-ring-resonator-graphene meta-surfaces that can dynamically transform the linearly polarized waves into its cross-linearly polarized counterparts or the circularly polarized waves. Such a meta-surface consists of a grounded skew-ring resonator array inserted with a monolayer graphene sheet that controls the electromagnetic interactions between the skew-ring resonators and the ground. Especially, the reconfigurable characteristic of graphene enables the reflections to be capable of converting from the cross-linearly polarized fields to the circularly polarized waves by setting different Fermi energies with the same original co-linearly polarized incidence. Finally, we demonstrate that the bandwidth of the cross-polarization conversion would be greatly expanded when the monolayer graphene sheet is integrated with skew-bar-resonator meta-surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []