Optimization of non-oxidative carbon-removal techniques by nitrogen-containing plasmas

2009 
Abstract The continuous control of tritium inventory in ITER calls for the development of new conditioning techniques [G. Federici et al., Nucl. Fus. 41 (2001) 1967]. For carbon plasma-facing components, this implies the removal of the T-rich carbon co-deposits. In the presence of strong oxygen getters, such Be, the use of oxygen-based techniques will be discouraged. In addition, tritiated water generated by these techniques poses extra problems in terms of safety issues [G. Saji, Fus. Eng. Des. 69 (2003) 631; G. Bellanger, J.J. Rameau, Fus. Technol. 32 (1997) 196; T. Hayashi, et al., Fus. Eng. Des. 81 (2006) 1365]. In the present work, oxygen-free (nitrogen and ammonia) glow discharge plasmas for carbon film removal were investigated. The following gas mixtures were fed into a DC glow discharge running in a ∼200 nm carbon film coated chamber. Erosion rate was measured in situ by laser interferometry, RGA (Residual Gas Analysis) and CTAMS (Cryotrapping Assisted Mass Spectrometry) [J.A. Ferreira, F.L. Tabares, J. Vac. Sci. Technol. A25(2) (2007) 246] were used for the characterization of the reaction products. Very high erosion rates (similar to those obtained in helium–oxygen glow discharge [J.A. Ferreira et al., J. Nucl. Mater. 363–365 (2007) 252]) were recorded for ammonia glow discharge.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    17
    Citations
    NaN
    KQI
    []