Mixed matrix membranes containing MIL-53(Al) for potential application in organic solvent nanofiltration
2015
Aromatic poly(m-phenyleneisophthalamide) (PMIA) and the metal-organic framework (MOF) MIL-53(Al) were employed as the polymer matrix and additive, respectively, to develop mixed matrix membranes (MMMs) via non-solvent induced phase separation for potential application in organic solvent nanofiltration. The prepared membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and water contact angle measurements. The membrane water permeance enhanced when MIL-53(Al) was incorporated into the membrane structure while the rejection had no significant change. The optimum MMM (with 0.5 wt% MOF concentration) passes mono and bivalent inorganic salts but rejects larger charged organic molecules and has a mean effective pore size of 0.7 nm. The influence of organic solvents on MMM performance was also investigated and the result shows that the performance shifts towards a lower pure water permeance and a higher rejection after exposure to organic solvents (ethyl acetate or methanol). The membrane performance in organic solvent nanofiltration was evaluated on the basis of the permeance and rejection of brilliant blue G in ethanol, and the result showed that the permeance of MMMs significantly increased (by 289%) while the rejection slightly reduced by 4% in contrast to the pure membrane.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
46
References
41
Citations
NaN
KQI