Microbe-Enhanced Environmental Fatigue Crack Propagation in HY130 Steel

1994 
Abstract Research was undertaken to characterize the effect of sulfate-reducing bacteria (SRB) on aqueous environment-enhanced fatigue cracking in a high-strength alloy steel. Desulfovibrio vulgaris in Postgate C solution greatly increased rates of ambient-temperature fatigue crack propagation (FCP) in tempered martensitic HY130 steel (MIL-S-24371A) under cathodic polarization and low-frequency, constant stress intensity range (ΔK) loading. Crack growth rates (da/dN) in the SRB solution increased 50- to 1,000-fold relative to FCP in sterile sodium chloride (NaCl) solution at −1,000 mVSCE and under vacuum, respectively. The presence of microbes shifted fatigue cracking from a transgranular path (typical in sterile NaCl) to an intergranular crack path consistent with the enhanced growth rates. The SRB reduced fatigue crack initiation resistance, countering the beneficial effect of cathodic polarization for sterile NaCl. Metal embrittlement and increased hydrogen uptake at the occluded crack tip caused by ba...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    13
    Citations
    NaN
    KQI
    []