Bionic Design and Simulation Analysis of Energy-Efficient and Vibration-Damping Walking Mechanism

2021 
African ostrich can run for 30 min at a speed of 60 km/h in the desert, and its hindlimb has excellent energy saving and vibration damping performance. In order to realize the energy-efficient and vibration-damping design of the leg mechanism of the legged robot, the principle of engineering bionics was applied. According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb, combined with the proportion and size of the structure of the ostrich hindlimb, the bionic rigid-flexible composite legged robot single-leg structure was designed. The locomotion of the bionic mechanical leg was simulated by means of ADAMS. Through the motion simulation analysis, the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied, and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm, and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg. Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []