Electron microscopy characterization of the fuel-cladding interaction in medium burnup annular fast reactor MOX

2021 
Abstract In this work, we present electron microscopy data focused on the fuel-cladding interaction layer in annular fast reactor MOX with HT-9 cladding at medium burnup. In agreement with previous literature data, the volatiles fission products Cs, Te and I have migrated radially into the extreme fuel periphery and partially interacted with the cladding. The accumulation of Cs has occurred in the outermost rim of the fuel pellet, where grain recrystallization has also been observed. Significant amounts of Pd have been found in the interaction zone, particularly in the sample taken from the upper half of the fissile column where the cladding temperatures are higher. At this axial location, Cr has been enriched at the cladding inner surface and diffused into the fuel. Chromium remains mainly in metallic form, but locally formed oxides and the fission products Cs, Te and I are found, with variable composition, in form of nanocrystalline regions dispersed in the metallic Cr-rich layer. The morphology and chemical characteristics of the layer suggest a non-oxidative corrosion mechanism as principal cladding degradation phenomenon occurring in this sample, with local onset of Cr oxidation within the nanocrystalline precipitates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []