Seasonal Timing for Estimating Carbon Mitigation in Revegetation of Abandoned Agricultural Land with High Spatial Resolution Remote Sensing

2017 
Dryland salinity is a major land management issue globally, and results in the abandonment of farmland. Revegetation with halophytic shrub species such as Atriplex nummularia for carbon mitigation may be a viable option but to generate carbon credits ongoing monitoring and verification is required. This study investigated the utility of high-resolution airborne images (Digital Multi Spectral Imagery (DMSI)) obtained in two seasons to estimate carbon stocks at the plant- and stand-scale. Pixel-scale vegetation indices, sub-pixel fractional green vegetation cover for individual plants, and estimates of the fractional coverage of the grazing plants within entire plots, were extracted from the high-resolution images. Carbon stocks were correlated with both canopy coverage (R2: 0.76–0.89) and spectral-based vegetation indices (R2: 0.77–0.89) with or without the use of the near-infrared spectral band. Indices derived from the dry season image showed a stronger correlation with field measurements of carbon than those derived from the green season image. These results show that in semi-arid environments it is better to estimate saltbush biomass with remote sensing data in the dry season to exclude the effect of pasture, even without the refinement provided by a vegetation classification. The approach of using canopy cover to refine estimates of carbon yield has broader application in shrublands and woodlands.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    10
    Citations
    NaN
    KQI
    []