A PSP-Based Small-Signal MOSFET Model for Both Quasi-Static and Nonquasi-Static Operations
2008
In this paper, a small-signal MOSFET model is described, which takes the local effects of both velocity saturation and transverse mobility reduction into account. The model is based on the PSP model and is valid for both quasi-static and nonquasi-static (NQS) operations. Recently, it has been found that, in the presence of velocity saturation, the low-frequency capacitances cannot be determined from the Ward-Dutton charge-partitioning scheme. By use of the small-signal model developed in this paper, it is demonstrated that, in the presence of velocity saturation, no terminal drain and source charges exist, from which the capacitances can be derived. The small-signal model enables the determination of the correct capacitive behavior in the presence of velocity saturation. Furthermore, it is demonstrated how the small-signal model can be used to determine the number of collocation points needed in the large-signal NQS PSP model. Finally, inclusion of the local variation of mobility reduction due to the vertical electrical fields provides insight into the approach commonly applied in compact modeling, where these fields are replaced by global ones depending on the terminal voltages only.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
21
References
8
Citations
NaN
KQI