Development of Fluorescently Labeled, Functional Type I Collagen Molecules.

2021 
While de novo collagen fibril formation is well-studied, there are few investigations into the growth and remodeling of extant fibrils, where molecular collagen incorporation into and erosion from the fibril surface must delicately balance during fibril growth and remodeling. Observing molecule/fibril interactions is difficult, requiring the tracking of molecular dynamics while, at the same time, minimizing the effect of the observation on fibril structure and assembly. To address the observation-interference problem, exogenous collagen molecules are tagged with small fluorophores and the fibrillogenesis kinetics of labeled collagen molecules as well as the structure and network morphology of assembled fibrils are examined. While excessive labeling significantly disturbs fibrillogenesis kinetics and network morphology of assembled fibrils, adding less than ∼1.2 labels per collagen molecule preserves these characteristics. Applications of the functional, labeled collagen probe are demonstrated in both cellular and acellular systems. The functional, labelled collagen associates strongly with native fibrils and when added to an in vitro model of corneal stromal development at low concentration, the labelled collagen is incorporated into a fine extracellular matrix network associated with the cells within 24 hours. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []