Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials

2021 
The rapid and sensitive detection of plant-growth-regulator (PGR) residue is essential for ensuring food safety for consumers. However, there are many disadvantages in current approaches to detecting PGR residue. In this paper, we demonstrate a highly sensitive PGR detection method by using terahertz time-domain spectroscopy combined with metamaterials. We propose a double formant metamaterial resonator based on a split-ring structure with titanium-gold nanostructure. The metamaterial resonator is a split-ring structure composed of a titanium-gold nanostructure based on polyimide film as the substrate. Also, terahertz spectral response and electric field distribution of metamaterials under different analyte thickness and refractive index were investigated. The simulation results showed that the theoretical sensitivity of resonance peak 1 and peak 2 of the refractive index sensor based on our designed metamaterial resonator approaches 780 and 720 gigahertz per refractive index unit (GHz/RIU), respectively. In experiments, a rapid solution analysis platform based on the double formant metamaterial resonator was set up and PGR residues in aqueous solution were directly and rapidly detected through terahertz time-domain spectroscopy. The results showed that metamaterials can successfully detect butylhydrazine and N-N diglycine at a concentration as low as 0.05 mg/L. This study paves a new way for sensitive, rapid, low-cost detection of PGRs. It also means that the double formant metamaterial resonator has significant potential for other applications in terahertz sensing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []