Evolution of Pearlite Microstructure in Low-Carbon Cast Microalloyed Steel Due to the Addition of La and Ce

2018 
The effects of rare earth elements (RE) addition on the pearlite microstructure in low-carbon microalloyed steels have been investigated under two heat treatment conditions: (1) a normalizing treatment (as a conventional heat treatment used industrially to obtain the final mechanical properties of such steels), and (2) an isothermal treatment at 650 °C. This research reports the following effects due to the addition of RE: (i) refinement of the nodule and colony size of pearlite along with the ferrite grain size in the normalized condition, without a significant change in the volume fraction of pearlite. This microstructural refinement observed at room temperature is a consequence of the refinement of cast and austenitic microstructures formed during cooling in the presence of RE; (ii) the interlamellar spacing of pearlite isothermally transformed at 650 °C, as observed by SEM and TEM, is effectively reduced in the RE-added steel. This is likely due to two different effects combined: (i) direct influence of RE on atom carbon diffusion; and (ii) pearlite growth being boundary diffusion controlled by RE partitioning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    8
    Citations
    NaN
    KQI
    []