Log‐mean Linear Parameterization for Discrete Graphical Models of Marginal Independence and the Analysis of Dichotomizations

2015 
type="main" xml:id="sjos12126-abs-0001"> We extend the log-mean linear parameterization for binary data to discrete variables with arbitrary number of levels and show that also in this case it can be used to parameterize bi-directed graph models. Furthermore, we show that the log-mean linear parameterization allows one to simultaneously represent marginal independencies among variables and marginal independencies that only appear when certain levels are collapsed into a single one. We illustrate the application of this property by means of an example based on genetic association studies involving single-nucleotide polymorphisms. More generally, this feature provides a natural way to reduce the parameter count, while preserving the independence structure, by means of substantive constraints that give additional insight into the association structure of the variables. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    5
    Citations
    NaN
    KQI
    []