Maximal power for heat engines: role of asymmetric interaction times.

2021 
The performance of endoreversible thermal machines operating at finite power constitutes one of the main challenges of nonequilibrium classical and quantum thermodynamics, engineering and others. We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance. We consider one of the simplest thermal machines, composed of a quantum dot interacting sequentially with two different reservoirs of heat and particles. Distinct optimization protocols are analyzed in the framework of stochastic thermodynamics. Results reveal that asymmetric interaction times play a fundamental role in enhancing the power output and that maximizations can provide an increase larger than 25\% the symmetric case. As an extra advantage, efficiencies at maximum power are slightly greater than the endoreversible Curzon-Ahlborn efficiency for a broad range of reservoir temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []