A new possible giant hydrocarbon generated formation: The Upper Triassic source rock in Southwestern Junggar Basin, NW China

2017 
Abstract The Triassic formation is a possible new giant hydrocarbon generated formation in Northwest China and Mid-Asia. Taking the Upper Triassic formation in the Sikeshu Sag in Junggar Basin as an example, based on the comprehensive analysis on the geochemical characteristics of the cores and the dark mudstone of the outcrops and reservoir formation conditions, we have evaluated the Upper Triassic source rocks by comparing with those in the Ulungu Depression, and reached the following findings. Firstly, the Upper Triassic formation is mainly composed of dark mudstone and sandy mudstone deposits, and the hydrocarbon source rock is mainly distributed in the middle and upper parts with a thickness range of 100–150 m and area of 3500 km 2 . Secondly, the source rock, moderate in organic matter abundance (with TOC range of 1%–3%), has the material basis for hydrocarbon generation. Thirdly, the organic matter has high percentage of sapropelinite, and is dominated by type II 2 . Fourthly, the degree of the thermal evolution is moderate, and the source rock with R o higher than 0.7% has a distribution area of about 1800 km 2 , providing the conditions of massive hydrocarbon generation. Fifthly, the source rock has great burial depth and wide distribution; the source rock with a R o of higher than 0.7% and thickness of more than 100 m has an area of around 1400 km 2 , implying huge resource potential. Sixthly, the next step exploration should focus on highly mature hydrocarbon generation central area in the Upper Triassic - Lower Jurassic in the east of the sag to search for and confirm favorable traps. The research findings have important reference value for promoting the resource status of, deepening the understanding of reservoir formation, and clarifying the exploration direction in the Sikeshu Sag and other periphery Mid-Asia areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    7
    Citations
    NaN
    KQI
    []