language-icon Old Web
English
Sign In

On sum sets of convex functions.

2021 
In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to also prove the three-variable expansion result \[ |AB+A|\gtrsim |A|^{\frac32 +\frac3{170}}\,. \] Our methods follow a series of recent developments in the sum-product literature, presenting a unified picture. Of particular interest is an adaptation of a regularisation technique of Xue, that enables us to find positive proportion subsets with certain desirable properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    7
    Citations
    NaN
    KQI
    []