Mechanism of blockage of amphotericin B channels in a lipid bilayer.

1979 
Abstract A number of organic compounds (non-electrolytes, tetraalkylammonia, etc.) with a molecular size of 6–8 A decrease the conductance of ionic channels formed in the lipid bilayer by a polyene antibiotic amphotericin B. It is suggested that these compounds, upon entering the channel, block the passage of inorganic ions. The extent of conductance blockage by organic ions depends on the membrane potential and electrolyte concentration. In the presence of ionic blockers, for instance tetraethylammonium, amphotericin B-containing membranes assume some properties characteristic of excitable membranes, i.e. the current-voltage characteristic acquires the negative resistance region, and in response to a potential step activation followed by inactivation of conductance is observed. It is shown that the potential dependence of the blockage is due to interaction inside the channel of the blocker ion with penetrating ions, by a mechanism similar to that described by Armstrong ((1979) Q. Rev. Biophys. 7, 179–210) for blockage of squid axon potassium channels by ammonium derivatives.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    34
    Citations
    NaN
    KQI
    []