Protective effects of mesenchymal stem cells overexpressing extracellular regulating kinase 1/2 against stroke in rats

2019 
Abstract Objective Although transplantation of bone marrow-derived mesenchymal stem cells (MSCs) has shown beneficial effects on stroke, lower survival of MSCs limits effects. Extracellular regulating kinase 1/2 signaling (ERK1/2) is crucial for cell survival, differentiation, and proliferation. This study was designed to explore whether MSCs modified by over-expressing ERK1/2 may reinforce beneficial effects on stroke in rats. Methods rat MSCs transfected with ERK1/2 and empty lentivirus to generate MSCs overexpressing ERK1/2 (ERK/MSCs) and MSCs (as a control), respectively. In vitro , ERK/MSCs were plated and exposed to glutamate-induced condition, and viability of ERK/MSCs was measured. Furthermore, neural induction of ERK/MSCs was investigated in vitro . Cerebral ischemic rats were induced by occluding middle cerebral artery, and then were stereotaxically injected into ipsilateral right lateral ventricle with ERK/MSCs or MSCs 3 days after stroke and survived for 7 or 14 days after injection. Results ERK/MSCs showed better viability in physiological and glutamate-induced neurotoxic conditions compared to MSCs. After neural induction, more neurons were be differentiated from ERK/MSCs than from MSCs. After transplantation, more numbers of grafted cells and improved functional recovery were observed in ERK/MSCs-treated rats compared with MSCs-treated rats. Compared with MSCs treatment, ERK/MSCs treatment significantly increased proliferation of neural stem cells in the subventricle zone (SVZ) and the MAP2/nestin double-labeled cells adjacent to the SVZ, enhanced the numbers of reactive astrocytes while suppressed microglial activation. Besides, TNF-α level was elevated in ERK/MSCs-treated rats. Conclusion: ERK/MSCs transplantation showed better functional recovery after stroke in rats, likely in part through enhancing survival of MSCs and possibly by modulating the proliferation, neuronal de-differentiation and neuroinflammation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    5
    Citations
    NaN
    KQI
    []