Effect of native aggregation state of soluble wheat gluten on deamidation behavior in a carboxylic acid/heat water solution

2016 
Abstract To understand the role of native aggregation state (NAS) of soluble wheat gluten and fractions during deamidation in a carboxylic acid/heat water solution, changes in conformation and deamidation behavior as function of protein concentration from dilute to semi-concentrated regimes to control NAS were investigated by physicochemical properties, SDS-PAGE, molecular force change, intrinsic fluorescence emission spectroscopy (IFES) and FTIR. Our data show that, in this solution, the deamidated proteins displayed features characteristic of more scattered and flexible polymer structure in dilute concentration than concentrated ones. Degree of deamidation (DD), HD and Zeta potential exhibited strongly oppositely with the decreasing concentration. HWM-GS, ω-gliadins and LWM-GS degraded into smaller peptides with decreasing of NAS. FTIR and IFES displayed that improved molecular flexibility with decreasing of concentration as detected by the increasing content of β-turn and β-sheet, as well as the red-shift of wheat gluten and gliadins at the expense of α-helix. Hydrophobic and hydrogen bond increased gradually and were dominant in inter-molecule as function of increasing concentration. The above information demonstrated that NAS of soluble wheat gluten dominated changes of deamidation behavior and conformation in a carboxylic acid/heat water solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    10
    Citations
    NaN
    KQI
    []