Evolution of an elliptic vortex ring in a viscous fluid

2016 
The evolution of a viscous elliptic vortex ring in an initially quiescent fluid or a linear shear flow is numerically simulated using a lattice Boltzmann method. A wide range of parameters are considered, namely, aspect ratios (AR) (1 ≤ AR ≤ 8), core radius to ring radius ratios (σ0) (0.1 ≤ σ0 ≤ 0.3), Reynolds number (Re) (500 ≤ Re ≤ 3000), and shear rate (K) (0 ≤ K ≤ 0.12). The study aims to fill the gap in the current knowledge of the dynamics of an elliptic vortex ring in a viscous fluid and also to address the issue of whether an elliptic ring undergoes vortex stretching and compression during axis-switching. In a quiescent fluid, results show that for fixed Re and σ0, there exists a critical aspect ratio (ARc), below which an elliptic ring undergoes oscillatory deformation with the period that increases with increasing AR. Above ARc, the vortex ring breaks up into two or three sub-rings after the first half-cycle of oscillation. While higher Reynolds number enhances vortex ring breakup, larger core s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    24
    Citations
    NaN
    KQI
    []