Assessing the Effect of Stellar Companions from High-resolution Imaging of Kepler Objects of Interest

2017 
We report on 176 close ( 90% for companions within 0.”5; the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X_R = R_p (true)/R_p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X_R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    65
    Citations
    NaN
    KQI
    []