Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems.
2021
Abstract Potentially toxic elements (PTEs) and phthalic acid esters (PAEs) often coexist in contaminated soils. Their co-existence may affect the mutual sorption behavior, and thereby influence their bioavailability and fate in soils. To our best knowledge, the impacts of plant-and animal-derived biochar on the competitive sorption-desorption of PTEs and PAEs in soils with different organic carbon content have not been studied up to date. Therefore, in this study, batch sorption-desorption experiments were conducted to investigate the influence of biochars derived from pig carcass and Platanus orientalis branches on the mono- and competitive sorption of cadmium (Cd2+) and diethyl phthalate (DEP) in soils with high (HS) and low (LS) organic carbon content. The DEP sorption was well described by Freundlich isotherm model, while Cd2+ sorption fitted better with the Langmuir isotherm model. Application of both biochars enhanced soil sorption of DEP, which increased as the application doses increased. The HS showed a stronger affinity to both DEP and Cd2+ than the LS. In the LS, the pig carcass biochar (PB) addition was more effective to increase the sorption capacity of Cd2+ and DEP and to reduce their desorption than woody biochar (WB) treatments. Moreover, the co-existing of Cd2+ could reduce the sorption of DEP, especially in the LS. The presence of DEP enhanced Cd2+ sorption in LS treated by both biochars, but the sorption of Cd2+ was suppressed with DEP addition in the PB-amended HS. In conclusion, the soil sorption capacity of DEP and Cd2+ was affected by biochar type, application dose and soil organic carbon content. The reciprocal effect between DEP and Cd2+ was also a crucial factor influencing their sorption/desorption by biochar. Therefore, PB and WB, especially PB, can be used for metal/DEP immobilization due to enhanced sorption. This approach is applicable for future remediation of soils contaminated by PTEs and PAEs.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
59
References
5
Citations
NaN
KQI