High-output-power densities from molecular beam epitaxy grown n- and p-type PbTeSe-based thermoelectrics via improved contact metallization

2012 
Electrical power densities of up to 33 W/cm2 and up to 12 W/cm2 were obtained for n-type and p-type PbTeSe-based stand-alone thermoelectric devices, respectively, at modest temperature gradients of ∼200 °C (Tcold = 25 °C). These large power densities were enabled by greatly improving electrical contact resistivities in the thermoelectric devices. Electrical contacts with contact resistivities as low as 3.9 × 10−6 Ω cm2 and 4.0 × 10−6 Ω cm2 for n- and p-type telluride-based- materials, respectively, were developed by investigating several metallization schemes and contact layer doping/alloy combinations, in conjunction with a novel contact application process. This process exposes heated semiconductor surfaces to an atomic hydrogen flux under high vacuum for surface cleaning (oxide and carbon removal), followed immediately by an in-situ electron-beam evaporation of the metal layers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    3
    Citations
    NaN
    KQI
    []